

UCSD CSE 190 A00 WEB APP PERFORMANCE AND MONITORING SPRING 2020

PUBLIC SITE PERFORMANCE REMEDIATION
By Gabriela Shirley

Mirror UCSD Homepage to my Github Pages

Moving only the assets of the homepage to my gabrielashirley.github.io repository, it takes

up 5.9MB space to download instead of 72.1MB when I tried to mirror the entire UCSD site.

The link to the original site that I mirrored is here: ​https://gabrielashirley.github.io/original/​.

Taking a baseline reading from Lighthouse:

2 Gabriela Shirley

https://gabrielashirley.github.io/original/

It does not show any significant difference compared to when I tested the real site

(​https://ucsd.edu/​) on the second picture. However, my first guess on the 3 points better in

performance, with every smaller (means better) number under the metrics when I served

the homepage on Github Pages has something to do with how good is Github Pages’

backend on serving static sites. As discussed in this site,

https://www.savjee.be/2017/10/Static-website-hosting-who-is-fastest/​, Github Pages wins

as the fastest and that everyone performs fairly consistently compared to other hosting

services such as Netlify, Amazon S3, CloudFront, Firebase Hosting, and Google Cloud.

Taking a baseline reading from WebPageTest:

3 Gabriela Shirley

https://ucsd.edu/
https://www.savjee.be/2017/10/Static-website-hosting-who-is-fastest/

Comparing the test results of my mirror and the real site, I observed that the total opposite

score of Compress Transfer and Effective use of Content Delivery Network (CDN) (Mirror: A

and vs Real: F and X) which in other words means the way the we fetch compressible ✓

static assets does make a difference. Since Github automatically compresses required files

into GZip if the browser supports it, whereas UCSD Server seems to not turn the feature on

(or maybe it does not support it), it helps saving time on the resource load times as well as

slow server response times. One extra thing that might help improve the Time to First Byte

(TTFB) of the real site is the use of CDN like Cloudflare, where it will manage the server

routing to the nearest ones from the user, thus reducing latency. Currently only the third

party assets use CDN like Google (including YouTube), Facebook, Cloudflare, etc.

Start render time is suggested to be around 1-2s. However, I noticed that both my mirror

and the real site have some kind of render blocking due to several CSS files which results in

having start render in 3.2s and 6.0s respectively.

4 Gabriela Shirley

Optimization

So to begin with my optimization attempts, I would take my mirror test results as my

baseline from now on.

1) Eliminate render-blocking (apply ​defer​ and ​rel=preload​) and add <noscript> fallback

Based on my observation, these resources can be deferred for later load and execution or

removed thus increasing start render time. Taken from class notion notes, scripts with the

defer attribute execute after HTML parsing is completely finished, but before the

DOMContentLoaded event. defer guarantees scripts will be executed in the order they

appear in the HTML and will not block the parser.

a) CSS resources:

● _resources/css/vendor/brix_sans.css

This is a font declaration. It can be deferred later in favor of similar fallback fonts and

reducing 2.1 MB load. Although it seems that this file is the biggest render-blocking of

this page and has 100% unused bytes from the Coverage report, we cannot guarantee

that this file ​is totally useless for the entire site unless we check coverage on every

single page, while executing JavaScript, and under any possible combinations of

state and media queries. And apparently, I found that some of the font-faces are

used on some ​button ​elements on the homepage. Therefore, I chose to defer.

● _resources/css/custom-img.css

This file contains background-images that are used throughout the bottom sections of

5 Gabriela Shirley

the page. I chose to defer since it will not affect the first impression considering the

limitation of viewports.

● _resources/css/custom.css

This file contains a lot of styles that are not used in the homepage so it is recommended

to either remove or defer this resource. I chose to defer because it might be used in

other pages, so the user can cache this resource for later-use.

● _resources/css/vendor/font-awesome.css

This is a font awesome integration usually for icons, and the only usage I found is for the

left and right arrow on the carousel. I chose to defer this since the icon usage in the

home page is minimal.

● _resources/css/vendor/slick.css ​&

_resources/css/vendor/slick-theme.css

This comes from a slider vendor "Slick". I chose to defer this since it is only used in the

"Academics" section in the middle of the page.

b) JavaScript resources:

● https://cdnjs.cloudflare.com/ajax/libs/gsap/2.0.2/TweenMax.min.

js ​ ​& _resources/js/look-deeper.js

This is used for graphic animation in the “Look Deeper” section, although it is barely

noticable in my opinion. I chose to defer, because deferring this would only make the

animation load later after the initial render has occurred.

After taken the step I re-ran both Lighthouse and WebPageTest, the result is way better, the

start render time improved from 3.2s to 1.2s:

6 Gabriela Shirley

7 Gabriela Shirley

2) Removed unused CSS and resource minification

I noticed that most of the JS and CSS files used are not minified yet and full of unused CSS.

First, I did some byte shaving by changing ​if else on to ternary function, removing comments

and dead codes, changing ​function ()​ to​ arrow =>​ on ​message.js ​and ​myscripts.js​.

I removed double declarations on background images on ​custom-img.css​, using both

background and ​background-image ​to refer to the same file and the same class selector.

Moreover, there are some double even triple declarations on certain selectors as well such

as ​.attend-module ​and ​.attend-cta​.

Next, ​I found that @font-face in ​font-awesome.css ​has missing source files (it only has ​woff2​)

so I used only the ​woff2 format and removed the other formats since ​woff2 ​already covers

95.23% users of modern browsers with upgraded compression. The same thing goes for

glyphicons-halflings-regular.woff2 ​under ​bootstrap/fonts​, so I only kept that one as the source

file on ​styles.css​. I also removed unused font awesome icons which cut around 2,000 lines of

codes, since the homepage seems to only use left and right arrow icons.

Out of curiosity, I tried another hack on our biggest CSS problem ​brix_sans.css​. I modified it

to extract fonts to separate files under ​_resources/fonts/brix_sans​. For controlling font

performance, I applied ​font-display: swap as it has no block period and infinite swap period

to ensure text remains visible during webfont load

(​https://developers.google.com/web/updates/2016/02/font-display​). I also removed the 2

font-face declarations that are already commented out, and moved the ​@import

url("//hello.myfonts.net/count/31ba49"); ​to the bottom since this unnecessary

import of an analytics URL seems to cause the block. When I see the Network tab and

disable cache, this import takes a long time to load, perhaps the ​myfonts server is the

problem.

Since I feel like I have done much on the manual deletion, I minified JS and CSS files using

minifier tool online ​https://javascript-minifier.com/ and ​https://cssminifier.com/ for:

custom-img.css, custom.css, brix_sans.css, animate.css, font-awesome.css, slick-theme.css,

slick.css, look-deeper.js, myscripts.js, jquery-matchHeight.js, responsive-tabs.js, ​and

message.js. ​This step shows a bit of improvement on the performance score:

8 Gabriela Shirley

https://developers.google.com/web/updates/2016/02/font-display
https://javascript-minifier.com/
https://cssminifier.com/

Additionally, based on the networking data, the currently optimized site has 8.9 MB

transferred and 14.0 MB resources whereas the originally mirrored site has 17.5 MB

transferred and 23.8 MB resources. This shows great progress in all our minification

attempts.

3) Image compressions and proper sizing

It seems that some of the images have been compressed well enough, there are no

excessively large images > 1MB and most of the small web graphics are < 300KB. However,

there are still some potentially compressed images and improper sizes. So I compressed

the JPEG files and made it as progressive JPEG using ​http://optimizilla.com/​. I changed one

UCSD logo to download it into the local directory instead of fetching

http://www.ucsd.edu/_resources/img/logo_UCSD_white.png ​.

9 Gabriela Shirley

http://optimizilla.com/
http://www.ucsd.edu/_resources/img/logo_UCSD_white.png

Modified images:

● Compressed:

i. _resources/img/bg_attend.jpg

Result: from 587.9 KB to 253.3 KB

ii. _resources/img/bg_map.jpg

Result: from 94.0 KB to 45.6 KB

iii. _images/homepage/bg_studentlife_alt2.jpg

Result: from 244.3 KB to 62.1 KB

iv. _images/The-Playground_homepage.jpg

Result: from 141 KB to 66 KB

v. _images/shrinkingice.jpg

Result: from 82 KB to 8.7 KB

vi. _images/homepage/u-care-ucsd-1400x439.jpg

Result: from 17 KB to 14.1 KB

vii. _images/home-financial-aid.jpg

Result: from 54 KB to 47.7 KB

● Resized:

i. _images/sars-cov-2_homepage.jpg

Status: resized to 450px wide as shown on

https://ucsdnews.ucsd.edu/pressrelease/introducing-the-uc-san-diego-return-to-le

arn-program

Result: from 104 KB to 38 KB

ii. _images/The-Playground_homepage.jpg

Status: resized to 265px wide since as shown on home page

Result: from 66 KB to 25.4 KB

iii. _images/stats-number-one-public-service.jpg

Status: resized to 310px high as shown on home page through CSS rules

Result: from 45 KB to 31 KB

iv. _images/stats-second-quality-education.jpg

Status: resized to 310px high as shown on home page through CSS rules

Result: from 58 KB to 37 KB

10 Gabriela Shirley

https://ucsdnews.ucsd.edu/pressrelease/introducing-the-uc-san-diego-return-to-learn-program
https://ucsdnews.ucsd.edu/pressrelease/introducing-the-uc-san-diego-return-to-learn-program

v. _images/stats-top-ten.jpg

Status: resized to 310px high as shown on home page through CSS rules

Result: from 71 KB to 41 KB

The improvement seems pretty good, we 100% compressed all images and use progressive

JPEGs.

11 Gabriela Shirley

4) HTML Formatting (removed unused line breaks), Extracted SVG, and Utilized CDN for

several vendor resources

My first impression looking at the index.html file is the messy, excessively long code with

too many unused line breaks. So I formatted the document using VSCode built-in HTML

Language Feature formatter, and removed all the unused line breaks. Then, I extracted the

2 SVG elements to ​hero-big.svg ​and ​hero-small.svg ​under ​_resources​:

Next, I utilized CDN usage for several vendor resources: slick.min.css, slick-theme.min.css,

jquery.matchHeight-min.js, and slick.js.

This step apparently does not show any significant improvement from before.

12 Gabriela Shirley

5) Extract Critical CSS

Since our current goal is to improve the web performance, I chose to sacrifice the code

readability and purify the CSS to only one main file ​purified.css​, resulting in less HTTP

requests and staying DRY (Don’t Repeat Yourself). I used

https://github.com/purifycss/purifycss and it reduced all the CSS files by ~25.5%. This step

significantly raises the performance score from 50 to 70.

13 Gabriela Shirley

https://github.com/purifycss/purifycss

Conclusion

Up until this point, I have tried to optimize the mirror of ​https://ucsd.edu/ from 3 to 70

https://gabrielashirley.github.io/improved/​. Reading the baseline report from Lighthouse

and WebPageTest, I quickly noticed how bad the render-blocking CSS affects the

performance, especially the start render time metric. So I manipulated the JS and CSS load

using ​defer ​and ​rel=preload ​which gave score 31. I then ​removed unused CSS manually and

minified all JS and CSS files, I modified the huge ​brix_sans.css ​too. This step cut ~42%

resources and ~20% transferred according to the Network tab. Next, I optimized images by

compressing and resizing. This shows quite an increase to 50. Then, I removed unused line

breaks on HTML, extracted 2 SVGs, and utilized CDN for some vendor resources. And last but

not least, I extracted critical CSS into one file which reduced the CSS file size by ~25.5%. This

step apparently solved another performance bug from this site, adding 20 more points to the

performance score. So in the meantime, I got 70, but hopefully I could work on some more

improvements in the future.

14 Gabriela Shirley

https://ucsd.edu/
https://gabrielashirley.github.io/improved/

